2009 |
Salichs, Eulàlia, Ledda, Alice, Mularoni, Loris, Albà, M Mar, de la Luna, Susana PLoS genetics, 5 (3), pp. e1000397, 2009, ISSN: 1553-7404. (Abstract | Links | BibTeX | Tags: Amino Acids, Cell Line, Cell Nucleus, Cell Nucleus: chemistry, Cell Nucleus: genetics, Cell Nucleus: metabolism, Genome, Histidine, Histidine: chemistry, Histidine: genetics, Histidine: metabolism, human, Humans, Molecular Sequence Data, Nuclear Localization Signals, Nuclear Proteins, Nuclear Proteins: chemistry, Nuclear Proteins: genetics, Nuclear Proteins: metabolism, Protein Transport, Proteins, Proteins: chemistry, Proteins: genetics, Proteins: metabolism, Sequence Alignment, Tandem Repeat Sequences) @article{Salichs2009, title = {Genome-wide analysis of histidine repeats reveals their role in the localization of human proteins to the nuclear speckles compartment.}, author = {Salichs, Eulàlia and Ledda, Alice and Mularoni, Loris and Albà, M Mar and de la Luna, Susana}, url = {http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2644819&tool=pmcentrez&rendertype=abstract}, issn = {1553-7404}, year = {2009}, date = {2009-01-01}, journal = {PLoS genetics}, volume = {5}, number = {3}, pages = {e1000397}, abstract = {Single amino acid repeats are prevalent in eukaryote organisms, although the role of many such sequences is still poorly understood. We have performed a comprehensive analysis of the proteins containing homopolymeric histidine tracts in the human genome and identified 86 human proteins that contain stretches of five or more histidines. Most of them are endowed with DNA- and RNA-related functions, and, in addition, there is an overrepresentation of proteins expressed in the brain and/or nervous system development. An analysis of their subcellular localization shows that 15 of the 22 nuclear proteins identified accumulate in the nuclear subcompartment known as nuclear speckles. This localization is lost when the histidine repeat is deleted, and significantly, closely related paralogous proteins without histidine repeats also fail to localize to nuclear speckles. Hence, the histidine tract appears to be directly involved in targeting proteins to this compartment. The removal of DNA-binding domains or treatment with RNA polymerase II inhibitors induces the re-localization of several polyhistidine-containing proteins from the nucleoplasm to nuclear speckles. These findings highlight the dynamic relationship between sites of transcription and nuclear speckles. Therefore, we define the histidine repeats as a novel targeting signal for nuclear speckles, and we suggest that these repeats are a way of generating evolutionary diversification in gene duplicates. These data contribute to our better understanding of the physiological role of single amino acid repeats in proteins.}, keywords = {Amino Acids, Cell Line, Cell Nucleus, Cell Nucleus: chemistry, Cell Nucleus: genetics, Cell Nucleus: metabolism, Genome, Histidine, Histidine: chemistry, Histidine: genetics, Histidine: metabolism, human, Humans, Molecular Sequence Data, Nuclear Localization Signals, Nuclear Proteins, Nuclear Proteins: chemistry, Nuclear Proteins: genetics, Nuclear Proteins: metabolism, Protein Transport, Proteins, Proteins: chemistry, Proteins: genetics, Proteins: metabolism, Sequence Alignment, Tandem Repeat Sequences} } Single amino acid repeats are prevalent in eukaryote organisms, although the role of many such sequences is still poorly understood. We have performed a comprehensive analysis of the proteins containing homopolymeric histidine tracts in the human genome and identified 86 human proteins that contain stretches of five or more histidines. Most of them are endowed with DNA- and RNA-related functions, and, in addition, there is an overrepresentation of proteins expressed in the brain and/or nervous system development. An analysis of their subcellular localization shows that 15 of the 22 nuclear proteins identified accumulate in the nuclear subcompartment known as nuclear speckles. This localization is lost when the histidine repeat is deleted, and significantly, closely related paralogous proteins without histidine repeats also fail to localize to nuclear speckles. Hence, the histidine tract appears to be directly involved in targeting proteins to this compartment. The removal of DNA-binding domains or treatment with RNA polymerase II inhibitors induces the re-localization of several polyhistidine-containing proteins from the nucleoplasm to nuclear speckles. These findings highlight the dynamic relationship between sites of transcription and nuclear speckles. Therefore, we define the histidine repeats as a novel targeting signal for nuclear speckles, and we suggest that these repeats are a way of generating evolutionary diversification in gene duplicates. These data contribute to our better understanding of the physiological role of single amino acid repeats in proteins. |
Toll-Riera, Macarena, Castelo, Robert, Bellora, Nicolás, Albà, M Mar Evolution of primate orphan proteins. (Article) Biochemical Society transactions, 37 (Pt 4), pp. 778–82, 2009, ISSN: 1470-8752. (Abstract | Links | BibTeX | Tags: Animals, Evolution, Gene Duplication, Genome, Genome: genetics, Molecular, Primates, Primates: genetics, Proteins, Proteins: genetics) @article{Toll-Riera2009, title = {Evolution of primate orphan proteins.}, author = {Toll-Riera, Macarena and Castelo, Robert and Bellora, Nicolás and Albà, M Mar}, url = {http://www.ncbi.nlm.nih.gov/pubmed/19614593}, issn = {1470-8752}, year = {2009}, date = {2009-01-01}, journal = {Biochemical Society transactions}, volume = {37}, number = {Pt 4}, pages = {778--82}, abstract = {Genomes contain a large number of genes that do not have recognizable homologues in other species. These genes, found in only one or a few closely related species, are known as orphan genes. Their limited distribution implies that many of them are probably involved in lineage-specific adaptive processes. One important question that has remained elusive to date is how orphan genes originate. It has been proposed that they might have arisen by gene duplication followed by a period of very rapid sequence divergence, which would have erased any traces of similarity to other evolutionarily related genes. However, this explanation does not seem plausible for genes lacking homologues in very closely related species. In the present article, we review recent efforts to identify the mechanisms of formation of primate orphan genes. These studies reveal an unexpected important role of transposable elements in the formation of novel protein-coding genes in the genomes of primates.}, keywords = {Animals, Evolution, Gene Duplication, Genome, Genome: genetics, Molecular, Primates, Primates: genetics, Proteins, Proteins: genetics} } Genomes contain a large number of genes that do not have recognizable homologues in other species. These genes, found in only one or a few closely related species, are known as orphan genes. Their limited distribution implies that many of them are probably involved in lineage-specific adaptive processes. One important question that has remained elusive to date is how orphan genes originate. It has been proposed that they might have arisen by gene duplication followed by a period of very rapid sequence divergence, which would have erased any traces of similarity to other evolutionarily related genes. However, this explanation does not seem plausible for genes lacking homologues in very closely related species. In the present article, we review recent efforts to identify the mechanisms of formation of primate orphan genes. These studies reveal an unexpected important role of transposable elements in the formation of novel protein-coding genes in the genomes of primates. |
2005 |
Albà, M Mar, Castresana, Jose Inverse relationship between evolutionary rate and age of mammalian genes. (Article) Molecular biology and evolution, 22 (3), pp. 598–606, 2005, ISSN: 0737-4038. (Abstract | Links | BibTeX | Tags: Animals, DNA, Evolution, Genome, human, Humans, Mice, Molecular, Sequence Analysis) @article{Alba2005, title = {Inverse relationship between evolutionary rate and age of mammalian genes.}, author = {Albà, M Mar and Castresana, Jose}, url = {http://www.ncbi.nlm.nih.gov/pubmed/15537804}, issn = {0737-4038}, year = {2005}, date = {2005-01-01}, journal = {Molecular biology and evolution}, volume = {22}, number = {3}, pages = {598--606}, abstract = {A large number of genes is shared by all living organisms, whereas many others are unique to some specific lineages, indicating their different times of origin. The availability of a growing number of eukaryotic genomes allows us to estimate which mammalian genes are novel genes and, approximately, when they arose. In this article, we classify human genes into four different age groups and estimate evolutionary rates in human and mouse orthologs. We show that older genes tend to evolve more slowly than newer ones; that is, proteins that arose earlier in evolution currently have a larger proportion of sites subjected to negative selection. Interestingly, this property is maintained when a fraction of the fastest-evolving genes is excluded or when only genes belonging to a given functional class are considered. One way to explain this relationship is by assuming that genes maintain their functional constraints along all their evolutionary history, but the nature of more recent evolutionary innovations is such that the functional constraints operating on them are increasingly weaker. Alternatively, our results would also be consistent with a scenario in which the functional constraints acting on a gene would not need to be constant through evolution. Instead, starting from weak functional constraints near the time of origin of a gene-as supported by mechanisms proposed for the origin of orphan genes-there would be a gradual increase in selective pressures with time, resulting in fewer accepted mutations in older versus more novel genes.}, keywords = {Animals, DNA, Evolution, Genome, human, Humans, Mice, Molecular, Sequence Analysis} } A large number of genes is shared by all living organisms, whereas many others are unique to some specific lineages, indicating their different times of origin. The availability of a growing number of eukaryotic genomes allows us to estimate which mammalian genes are novel genes and, approximately, when they arose. In this article, we classify human genes into four different age groups and estimate evolutionary rates in human and mouse orthologs. We show that older genes tend to evolve more slowly than newer ones; that is, proteins that arose earlier in evolution currently have a larger proportion of sites subjected to negative selection. Interestingly, this property is maintained when a fraction of the fastest-evolving genes is excluded or when only genes belonging to a given functional class are considered. One way to explain this relationship is by assuming that genes maintain their functional constraints along all their evolutionary history, but the nature of more recent evolutionary innovations is such that the functional constraints operating on them are increasingly weaker. Alternatively, our results would also be consistent with a scenario in which the functional constraints acting on a gene would not need to be constant through evolution. Instead, starting from weak functional constraints near the time of origin of a gene-as supported by mechanisms proposed for the origin of orphan genes-there would be a gradual increase in selective pressures with time, resulting in fewer accepted mutations in older versus more novel genes. |
2004 |
Castresana, Jose, Guigó, Roderic, Albà, M Mar Journal of molecular evolution, 59 (1), pp. 72–9, 2004, ISSN: 0022-2844. (Abstract | Links | BibTeX | Tags: Base Composition, Base Composition: genetics, Chromatin, Chromatin: metabolism, Chromosomes, Computational Biology, Databases, DNA-Binding Proteins, DNA-Binding Proteins: genetics, DNA-Binding Proteins: metabolism, Evolution, Genetic, Genome, human, Humans, Introns, Introns: genetics, Models, Molecular, Multigene Family, Multigene Family: genetics, Pair 19, Pair 19: genetics, Phylogeny, Zinc Fingers, Zinc Fingers: genetics) @article{Castresana2004, title = {Clustering of genes coding for DNA binding proteins in a region of atypical evolution of the human genome.}, author = {Castresana, Jose and Guigó, Roderic and Albà, M Mar}, url = {http://www.ncbi.nlm.nih.gov/pubmed/15383909}, issn = {0022-2844}, year = {2004}, date = {2004-01-01}, journal = {Journal of molecular evolution}, volume = {59}, number = {1}, pages = {72--9}, abstract = {Comparison of the human and mouse genomes has revealed that significant variations in evolutionary rates exist among genomic regions and that a large part of this variation is interchromosomal. We confirm in this work, using a large collection of introns, that human chromosome 19 is the one that shows the highest divergence with respect to mouse. To search for other differences among chromosomes, we examine the distribution of gene functions in human and mouse chromosomes using the Gene Ontology definitions. We found by correspondence analysis that among the strongest clusterings of gene functions in human chromosomes is a group of genes coding for DNA binding proteins in chromosome 19. Interestingly, chromosome 19 also has a very high GC content, a feature that has been proposed to promote an opening of the chromatin, thereby facilitating binding of proteins to the DNA helix. In the mouse genome, however, a similar aggregation of genes coding for DNA binding proteins and high GC content cannot be found. This suggests that the distribution of genes coding for DNA binding proteins and the variations of the chromatin accessibility to these proteins are different in the human and mouse genomes. It is likely that the overall high synonymous and intron rates in chromosome 19 are a by-product of the high GC content of this chromosome.}, keywords = {Base Composition, Base Composition: genetics, Chromatin, Chromatin: metabolism, Chromosomes, Computational Biology, Databases, DNA-Binding Proteins, DNA-Binding Proteins: genetics, DNA-Binding Proteins: metabolism, Evolution, Genetic, Genome, human, Humans, Introns, Introns: genetics, Models, Molecular, Multigene Family, Multigene Family: genetics, Pair 19, Pair 19: genetics, Phylogeny, Zinc Fingers, Zinc Fingers: genetics} } Comparison of the human and mouse genomes has revealed that significant variations in evolutionary rates exist among genomic regions and that a large part of this variation is interchromosomal. We confirm in this work, using a large collection of introns, that human chromosome 19 is the one that shows the highest divergence with respect to mouse. To search for other differences among chromosomes, we examine the distribution of gene functions in human and mouse chromosomes using the Gene Ontology definitions. We found by correspondence analysis that among the strongest clusterings of gene functions in human chromosomes is a group of genes coding for DNA binding proteins in chromosome 19. Interestingly, chromosome 19 also has a very high GC content, a feature that has been proposed to promote an opening of the chromatin, thereby facilitating binding of proteins to the DNA helix. In the mouse genome, however, a similar aggregation of genes coding for DNA binding proteins and high GC content cannot be found. This suggests that the distribution of genes coding for DNA binding proteins and the variations of the chromatin accessibility to these proteins are different in the human and mouse genomes. It is likely that the overall high synonymous and intron rates in chromosome 19 are a by-product of the high GC content of this chromosome. |
Huang, Hui, Winter, Eitan E, Wang, Huajun, Weinstock, Keith G, Xing, Heming, Goodstadt, Leo, Stenson, Peter D, Cooper, David N, Smith, Douglas, Albà, M Mar, Ponting, Chris P, Fechtel, Kim Genome biology, 5 (7), pp. R47, 2004, ISSN: 1465-6914. (Abstract | Links | BibTeX | Tags: Amino Acid, Amino Acid: genetics, Animal, Animals, Chromosome Mapping, Chromosome Mapping: methods, Conserved Sequence, Conserved Sequence: genetics, Disease Models, Evolution, Fishes, Fishes: genetics, Fungal, Fungal: genetics, Genes, Genes: genetics, Genes: physiology, Genetic, Genetic Diseases, Genome, Helminth, Helminth: genetics, human, Humans, Inborn, Inborn: genetics, Inborn: physiopathology, Insect, Insect: genetics, Mice, Molecular, Mutagenesis, Mutagenesis: genetics, Nucleic Acid, Nucleotides, Nucleotides: genetics, Point Mutation, Point Mutation: genetics, Rats, Repetitive Sequences, Selection, Sequence Homology, Trinucleotide Repeat Expansion, Trinucleotide Repeat Expansion: genetics) @article{Huang2004, title = {Evolutionary conservation and selection of human disease gene orthologs in the rat and mouse genomes.}, author = {Huang, Hui and Winter, Eitan E and Wang, Huajun and Weinstock, Keith G and Xing, Heming and Goodstadt, Leo and Stenson, Peter D and Cooper, David N and Smith, Douglas and Albà, M Mar and Ponting, Chris P and Fechtel, Kim}, url = {http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=463309&tool=pmcentrez&rendertype=abstract}, issn = {1465-6914}, year = {2004}, date = {2004-01-01}, journal = {Genome biology}, volume = {5}, number = {7}, pages = {R47}, abstract = {Model organisms have contributed substantially to our understanding of the etiology of human disease as well as having assisted with the development of new treatment modalities. The availability of the human, mouse and, most recently, the rat genome sequences now permit the comprehensive investigation of the rodent orthologs of genes associated with human disease. Here, we investigate whether human disease genes differ significantly from their rodent orthologs with respect to their overall levels of conservation and their rates of evolutionary change.}, keywords = {Amino Acid, Amino Acid: genetics, Animal, Animals, Chromosome Mapping, Chromosome Mapping: methods, Conserved Sequence, Conserved Sequence: genetics, Disease Models, Evolution, Fishes, Fishes: genetics, Fungal, Fungal: genetics, Genes, Genes: genetics, Genes: physiology, Genetic, Genetic Diseases, Genome, Helminth, Helminth: genetics, human, Humans, Inborn, Inborn: genetics, Inborn: physiopathology, Insect, Insect: genetics, Mice, Molecular, Mutagenesis, Mutagenesis: genetics, Nucleic Acid, Nucleotides, Nucleotides: genetics, Point Mutation, Point Mutation: genetics, Rats, Repetitive Sequences, Selection, Sequence Homology, Trinucleotide Repeat Expansion, Trinucleotide Repeat Expansion: genetics} } Model organisms have contributed substantially to our understanding of the etiology of human disease as well as having assisted with the development of new treatment modalities. The availability of the human, mouse and, most recently, the rat genome sequences now permit the comprehensive investigation of the rodent orthologs of genes associated with human disease. Here, we investigate whether human disease genes differ significantly from their rodent orthologs with respect to their overall levels of conservation and their rates of evolutionary change. |
Gibbs, Richard A, Et al. Genome sequence of the Brown Norway rat yields insights into mammalian evolution. (Article) Nature, 428 (6982), pp. 493–521, 2004, ISSN: 1476-4687. (Abstract | Links | BibTeX | Tags: Animals, Base Composition, Centromere, Centromere: genetics, Chromosomes, CpG Islands, CpG Islands: genetics, DNA, DNA Transposable Elements, DNA Transposable Elements: genetics, Evolution, Gene Duplication, Genome, Genomics, Humans, Inbred BN, Inbred BN: genetics, Introns, Introns: genetics, Male, Mammalian, Mammalian: genetics, Mice, Mitochondrial, Mitochondrial: genetics, Models, Molecular, Mutagenesis, Nucleic Acid, Nucleic Acid: genetics, Polymorphism, Rats, Regulatory Sequences, Retroelements, Retroelements: genetics, RNA, RNA Splice Sites, RNA Splice Sites: genetics, Sequence Analysis, Single Nucleotide, Single Nucleotide: genetics, Telomere, Telomere: genetics, Untranslated, Untranslated: genetics) @article{Gibbs2004, title = {Genome sequence of the Brown Norway rat yields insights into mammalian evolution.}, author = {Gibbs, Richard A and Et al.}, url = {http://www.ncbi.nlm.nih.gov/pubmed/15057822}, issn = {1476-4687}, year = {2004}, date = {2004-01-01}, journal = {Nature}, volume = {428}, number = {6982}, pages = {493--521}, abstract = {The laboratory rat (Rattus norvegicus) is an indispensable tool in experimental medicine and drug development, having made inestimable contributions to human health. We report here the genome sequence of the Brown Norway (BN) rat strain. The sequence represents a high-quality 'draft' covering over 90% of the genome. The BN rat sequence is the third complete mammalian genome to be deciphered, and three-way comparisons with the human and mouse genomes resolve details of mammalian evolution. This first comprehensive analysis includes genes and proteins and their relation to human disease, repeated sequences, comparative genome-wide studies of mammalian orthologous chromosomal regions and rearrangement breakpoints, reconstruction of ancestral karyotypes and the events leading to existing species, rates of variation, and lineage-specific and lineage-independent evolutionary events such as expansion of gene families, orthology relations and protein evolution.}, keywords = {Animals, Base Composition, Centromere, Centromere: genetics, Chromosomes, CpG Islands, CpG Islands: genetics, DNA, DNA Transposable Elements, DNA Transposable Elements: genetics, Evolution, Gene Duplication, Genome, Genomics, Humans, Inbred BN, Inbred BN: genetics, Introns, Introns: genetics, Male, Mammalian, Mammalian: genetics, Mice, Mitochondrial, Mitochondrial: genetics, Models, Molecular, Mutagenesis, Nucleic Acid, Nucleic Acid: genetics, Polymorphism, Rats, Regulatory Sequences, Retroelements, Retroelements: genetics, RNA, RNA Splice Sites, RNA Splice Sites: genetics, Sequence Analysis, Single Nucleotide, Single Nucleotide: genetics, Telomere, Telomere: genetics, Untranslated, Untranslated: genetics} } The laboratory rat (Rattus norvegicus) is an indispensable tool in experimental medicine and drug development, having made inestimable contributions to human health. We report here the genome sequence of the Brown Norway (BN) rat strain. The sequence represents a high-quality 'draft' covering over 90% of the genome. The BN rat sequence is the third complete mammalian genome to be deciphered, and three-way comparisons with the human and mouse genomes resolve details of mammalian evolution. This first comprehensive analysis includes genes and proteins and their relation to human disease, repeated sequences, comparative genome-wide studies of mammalian orthologous chromosomal regions and rearrangement breakpoints, reconstruction of ancestral karyotypes and the events leading to existing species, rates of variation, and lineage-specific and lineage-independent evolutionary events such as expansion of gene families, orthology relations and protein evolution. |
Publication List
Amino Acid Animals Computational Biology Databases de novo gene DNA Evolution Genetic Genome Humans lncRNA Mice Molecular Molecular Sequence Data Nucleic Acid Proteins Proteins: chemistry Proteins: genetics Repetitive Sequences ribosome profiling RNA-Seq Sequence Analysis Sequence Homology transcriptomics yeast
2009 |
PLoS genetics, 5 (3), pp. e1000397, 2009, ISSN: 1553-7404. |
Evolution of primate orphan proteins. (Article) Biochemical Society transactions, 37 (Pt 4), pp. 778–82, 2009, ISSN: 1470-8752. |
2005 |
Inverse relationship between evolutionary rate and age of mammalian genes. (Article) Molecular biology and evolution, 22 (3), pp. 598–606, 2005, ISSN: 0737-4038. |
2004 |
Journal of molecular evolution, 59 (1), pp. 72–9, 2004, ISSN: 0022-2844. |
Genome biology, 5 (7), pp. R47, 2004, ISSN: 1465-6914. |
Genome sequence of the Brown Norway rat yields insights into mammalian evolution. (Article) Nature, 428 (6982), pp. 493–521, 2004, ISSN: 1476-4687. |