2007 |
Farré, Domènec, Bellora, Nicolás, Mularoni, Loris, Messeguer, Xavier, Albà, M Mar Housekeeping genes tend to show reduced upstream sequence conservation. (Article) Genome biology, 8 (7), pp. R140, 2007, ISSN: 1465-6914. (Abstract | Links | BibTeX | Tags: Animals, Base Sequence, Conserved Sequence, CpG Islands, Evolution, Gene Expression, Genetic, Genetic Variation, Humans, Mice, Molecular, Molecular Sequence Data, Promoter Regions) @article{Farre2007, title = {Housekeeping genes tend to show reduced upstream sequence conservation.}, author = {Farré, Domènec and Bellora, Nicolás and Mularoni, Loris and Messeguer, Xavier and Albà, M Mar}, url = {http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2323216&tool=pmcentrez&rendertype=abstract}, issn = {1465-6914}, year = {2007}, date = {2007-01-01}, journal = {Genome biology}, volume = {8}, number = {7}, pages = {R140}, abstract = {Understanding the constraints that operate in mammalian gene promoter sequences is of key importance to understand the evolution of gene regulatory networks. The level of promoter conservation varies greatly across orthologous genes, denoting differences in the strength of the evolutionary constraints. Here we test the hypothesis that the number of tissues in which a gene is expressed is related in a significant manner to the extent of promoter sequence conservation.}, keywords = {Animals, Base Sequence, Conserved Sequence, CpG Islands, Evolution, Gene Expression, Genetic, Genetic Variation, Humans, Mice, Molecular, Molecular Sequence Data, Promoter Regions} } Understanding the constraints that operate in mammalian gene promoter sequences is of key importance to understand the evolution of gene regulatory networks. The level of promoter conservation varies greatly across orthologous genes, denoting differences in the strength of the evolutionary constraints. Here we test the hypothesis that the number of tissues in which a gene is expressed is related in a significant manner to the extent of promoter sequence conservation. |
2004 |
Gibbs, Richard A, Et al. Genome sequence of the Brown Norway rat yields insights into mammalian evolution. (Article) Nature, 428 (6982), pp. 493–521, 2004, ISSN: 1476-4687. (Abstract | Links | BibTeX | Tags: Animals, Base Composition, Centromere, Centromere: genetics, Chromosomes, CpG Islands, CpG Islands: genetics, DNA, DNA Transposable Elements, DNA Transposable Elements: genetics, Evolution, Gene Duplication, Genome, Genomics, Humans, Inbred BN, Inbred BN: genetics, Introns, Introns: genetics, Male, Mammalian, Mammalian: genetics, Mice, Mitochondrial, Mitochondrial: genetics, Models, Molecular, Mutagenesis, Nucleic Acid, Nucleic Acid: genetics, Polymorphism, Rats, Regulatory Sequences, Retroelements, Retroelements: genetics, RNA, RNA Splice Sites, RNA Splice Sites: genetics, Sequence Analysis, Single Nucleotide, Single Nucleotide: genetics, Telomere, Telomere: genetics, Untranslated, Untranslated: genetics) @article{Gibbs2004, title = {Genome sequence of the Brown Norway rat yields insights into mammalian evolution.}, author = {Gibbs, Richard A and Et al.}, url = {http://www.ncbi.nlm.nih.gov/pubmed/15057822}, issn = {1476-4687}, year = {2004}, date = {2004-01-01}, journal = {Nature}, volume = {428}, number = {6982}, pages = {493--521}, abstract = {The laboratory rat (Rattus norvegicus) is an indispensable tool in experimental medicine and drug development, having made inestimable contributions to human health. We report here the genome sequence of the Brown Norway (BN) rat strain. The sequence represents a high-quality 'draft' covering over 90% of the genome. The BN rat sequence is the third complete mammalian genome to be deciphered, and three-way comparisons with the human and mouse genomes resolve details of mammalian evolution. This first comprehensive analysis includes genes and proteins and their relation to human disease, repeated sequences, comparative genome-wide studies of mammalian orthologous chromosomal regions and rearrangement breakpoints, reconstruction of ancestral karyotypes and the events leading to existing species, rates of variation, and lineage-specific and lineage-independent evolutionary events such as expansion of gene families, orthology relations and protein evolution.}, keywords = {Animals, Base Composition, Centromere, Centromere: genetics, Chromosomes, CpG Islands, CpG Islands: genetics, DNA, DNA Transposable Elements, DNA Transposable Elements: genetics, Evolution, Gene Duplication, Genome, Genomics, Humans, Inbred BN, Inbred BN: genetics, Introns, Introns: genetics, Male, Mammalian, Mammalian: genetics, Mice, Mitochondrial, Mitochondrial: genetics, Models, Molecular, Mutagenesis, Nucleic Acid, Nucleic Acid: genetics, Polymorphism, Rats, Regulatory Sequences, Retroelements, Retroelements: genetics, RNA, RNA Splice Sites, RNA Splice Sites: genetics, Sequence Analysis, Single Nucleotide, Single Nucleotide: genetics, Telomere, Telomere: genetics, Untranslated, Untranslated: genetics} } The laboratory rat (Rattus norvegicus) is an indispensable tool in experimental medicine and drug development, having made inestimable contributions to human health. We report here the genome sequence of the Brown Norway (BN) rat strain. The sequence represents a high-quality 'draft' covering over 90% of the genome. The BN rat sequence is the third complete mammalian genome to be deciphered, and three-way comparisons with the human and mouse genomes resolve details of mammalian evolution. This first comprehensive analysis includes genes and proteins and their relation to human disease, repeated sequences, comparative genome-wide studies of mammalian orthologous chromosomal regions and rearrangement breakpoints, reconstruction of ancestral karyotypes and the events leading to existing species, rates of variation, and lineage-specific and lineage-independent evolutionary events such as expansion of gene families, orthology relations and protein evolution. |
Publication List
Amino Acid Animals Computational Biology Databases de novo gene Evolution Genetic Genome Humans lncRNA Mice Molecular Molecular Sequence Data Nucleic Acid Proteins Proteins: chemistry Proteins: genetics Repetitive Sequences ribosome profiling RNA-Seq Selection Sequence Analysis Sequence Homology transcriptomics yeast
2007 |
Housekeeping genes tend to show reduced upstream sequence conservation. (Article) Genome biology, 8 (7), pp. R140, 2007, ISSN: 1465-6914. |
2004 |
Genome sequence of the Brown Norway rat yields insights into mammalian evolution. (Article) Nature, 428 (6982), pp. 493–521, 2004, ISSN: 1476-4687. |