2007 |
Bellora, Nicolás, Farré, Domènec, Mar Albà, M PEAKS: identification of regulatory motifs by their position in DNA sequences. (Article) Bioinformatics (Oxford, England), 23 (2), pp. 243–4, 2007, ISSN: 1367-4811. (Abstract | Links | BibTeX | Tags: Algorithms, Automated, Automated: methods, Base Sequence, Chromosome Mapping, Chromosome Mapping: methods, DNA, DNA: genetics, DNA: methods, Molecular Sequence Data, Nucleic Acid, Nucleic Acid: genetics, Pattern Recognition, Regulatory Sequences, Sequence Alignment, Sequence Alignment: methods, Sequence Analysis, Software, Transcriptional Activation, Transcriptional Activation: genetics) @article{Bellora2007a, title = {PEAKS: identification of regulatory motifs by their position in DNA sequences.}, author = {Bellora, Nicolás and Farré, Domènec and Mar Albà, M}, url = {http://www.ncbi.nlm.nih.gov/pubmed/17098773}, issn = {1367-4811}, year = {2007}, date = {2007-01-01}, journal = {Bioinformatics (Oxford, England)}, volume = {23}, number = {2}, pages = {243--4}, abstract = {Many DNA functional motifs tend to accumulate or cluster at specific gene locations. These locations can be detected, in a group of gene sequences, as high frequency 'peaks' with respect to a reference position, such as the transcription start site (TSS). We have developed a web tool for the identification of regions containing significant motif peaks. We show, by using different yeast gene datasets, that peak regions are strongly enriched in experimentally-validated motifs and contain potentially important novel motifs. AVAILABILITY: http://genomics.imim.es/peaks}, keywords = {Algorithms, Automated, Automated: methods, Base Sequence, Chromosome Mapping, Chromosome Mapping: methods, DNA, DNA: genetics, DNA: methods, Molecular Sequence Data, Nucleic Acid, Nucleic Acid: genetics, Pattern Recognition, Regulatory Sequences, Sequence Alignment, Sequence Alignment: methods, Sequence Analysis, Software, Transcriptional Activation, Transcriptional Activation: genetics} } Many DNA functional motifs tend to accumulate or cluster at specific gene locations. These locations can be detected, in a group of gene sequences, as high frequency 'peaks' with respect to a reference position, such as the transcription start site (TSS). We have developed a web tool for the identification of regions containing significant motif peaks. We show, by using different yeast gene datasets, that peak regions are strongly enriched in experimentally-validated motifs and contain potentially important novel motifs. AVAILABILITY: http://genomics.imim.es/peaks |
2004 |
Albà, M Mar, Guigó, Roderic Comparative analysis of amino acid repeats in rodents and humans. (Article) Genome research, 14 (4), pp. 549–54, 2004, ISSN: 1088-9051. (Abstract | Links | BibTeX | Tags: Amino Acid, Amino Acid: genetics, Amino Acid: physiology, Animals, Chromosome Mapping, Chromosome Mapping: methods, Chromosome Mapping: statistics & numerical data, Computational Biology, Computational Biology: methods, Computational Biology: statistics & numerical data, GC Rich Sequence, GC Rich Sequence: genetics, Humans, Mice, Proteins, Proteins: chemistry, Proteins: genetics, Proteins: physiology, Rats, Repetitive Sequences, Trinucleotide Repeats, Trinucleotide Repeats: genetics) @article{Alba2004, title = {Comparative analysis of amino acid repeats in rodents and humans.}, author = {Albà, M Mar and Guigó, Roderic}, url = {http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=383298&tool=pmcentrez&rendertype=abstract}, issn = {1088-9051}, year = {2004}, date = {2004-01-01}, journal = {Genome research}, volume = {14}, number = {4}, pages = {549--54}, abstract = {Amino acid tandem repeats, also called homopolymeric tracts, are extremely abundant in eukaryotic proteins. To gain insight into the genome-wide evolution of these regions in mammals, we analyzed the repeat content in a large data set of rat-mouse-human orthologs. Our results show that human proteins contain more amino acid repeats than rodent proteins and that trinucleotide repeats are also more abundant in human coding sequences. Using the human species as an outgroup, we were able to address differences in repeat loss and repeat gain in the rat and mouse lineages. In this data set, mouse proteins contain substantially more repeats than rat proteins, which can be at least partly attributed to a higher repeat loss in the rat lineage. The data are consistent with a role for trinucleotide slippage in the generation of novel amino acid repeats. We confirm the previously observed functional bias of proteins with repeats, with overrepresentation of transcription factors and DNA-binding proteins. We show that genes encoding amino acid repeats tend to have an unusually high GC content, and that differences in coding GC content among orthologs are directly related to the presence/absence of repeats. We propose that the different GC content isochore structure in rodents and humans may result in an increased amino acid repeat prevalence in the human lineage.}, keywords = {Amino Acid, Amino Acid: genetics, Amino Acid: physiology, Animals, Chromosome Mapping, Chromosome Mapping: methods, Chromosome Mapping: statistics & numerical data, Computational Biology, Computational Biology: methods, Computational Biology: statistics & numerical data, GC Rich Sequence, GC Rich Sequence: genetics, Humans, Mice, Proteins, Proteins: chemistry, Proteins: genetics, Proteins: physiology, Rats, Repetitive Sequences, Trinucleotide Repeats, Trinucleotide Repeats: genetics} } Amino acid tandem repeats, also called homopolymeric tracts, are extremely abundant in eukaryotic proteins. To gain insight into the genome-wide evolution of these regions in mammals, we analyzed the repeat content in a large data set of rat-mouse-human orthologs. Our results show that human proteins contain more amino acid repeats than rodent proteins and that trinucleotide repeats are also more abundant in human coding sequences. Using the human species as an outgroup, we were able to address differences in repeat loss and repeat gain in the rat and mouse lineages. In this data set, mouse proteins contain substantially more repeats than rat proteins, which can be at least partly attributed to a higher repeat loss in the rat lineage. The data are consistent with a role for trinucleotide slippage in the generation of novel amino acid repeats. We confirm the previously observed functional bias of proteins with repeats, with overrepresentation of transcription factors and DNA-binding proteins. We show that genes encoding amino acid repeats tend to have an unusually high GC content, and that differences in coding GC content among orthologs are directly related to the presence/absence of repeats. We propose that the different GC content isochore structure in rodents and humans may result in an increased amino acid repeat prevalence in the human lineage. |
Huang, Hui, Winter, Eitan E, Wang, Huajun, Weinstock, Keith G, Xing, Heming, Goodstadt, Leo, Stenson, Peter D, Cooper, David N, Smith, Douglas, Albà, M Mar, Ponting, Chris P, Fechtel, Kim Genome biology, 5 (7), pp. R47, 2004, ISSN: 1465-6914. (Abstract | Links | BibTeX | Tags: Amino Acid, Amino Acid: genetics, Animal, Animals, Chromosome Mapping, Chromosome Mapping: methods, Conserved Sequence, Conserved Sequence: genetics, Disease Models, Evolution, Fishes, Fishes: genetics, Fungal, Fungal: genetics, Genes, Genes: genetics, Genes: physiology, Genetic, Genetic Diseases, Genome, Helminth, Helminth: genetics, human, Humans, Inborn, Inborn: genetics, Inborn: physiopathology, Insect, Insect: genetics, Mice, Molecular, Mutagenesis, Mutagenesis: genetics, Nucleic Acid, Nucleotides, Nucleotides: genetics, Point Mutation, Point Mutation: genetics, Rats, Repetitive Sequences, Selection, Sequence Homology, Trinucleotide Repeat Expansion, Trinucleotide Repeat Expansion: genetics) @article{Huang2004, title = {Evolutionary conservation and selection of human disease gene orthologs in the rat and mouse genomes.}, author = {Huang, Hui and Winter, Eitan E and Wang, Huajun and Weinstock, Keith G and Xing, Heming and Goodstadt, Leo and Stenson, Peter D and Cooper, David N and Smith, Douglas and Albà, M Mar and Ponting, Chris P and Fechtel, Kim}, url = {http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=463309&tool=pmcentrez&rendertype=abstract}, issn = {1465-6914}, year = {2004}, date = {2004-01-01}, journal = {Genome biology}, volume = {5}, number = {7}, pages = {R47}, abstract = {Model organisms have contributed substantially to our understanding of the etiology of human disease as well as having assisted with the development of new treatment modalities. The availability of the human, mouse and, most recently, the rat genome sequences now permit the comprehensive investigation of the rodent orthologs of genes associated with human disease. Here, we investigate whether human disease genes differ significantly from their rodent orthologs with respect to their overall levels of conservation and their rates of evolutionary change.}, keywords = {Amino Acid, Amino Acid: genetics, Animal, Animals, Chromosome Mapping, Chromosome Mapping: methods, Conserved Sequence, Conserved Sequence: genetics, Disease Models, Evolution, Fishes, Fishes: genetics, Fungal, Fungal: genetics, Genes, Genes: genetics, Genes: physiology, Genetic, Genetic Diseases, Genome, Helminth, Helminth: genetics, human, Humans, Inborn, Inborn: genetics, Inborn: physiopathology, Insect, Insect: genetics, Mice, Molecular, Mutagenesis, Mutagenesis: genetics, Nucleic Acid, Nucleotides, Nucleotides: genetics, Point Mutation, Point Mutation: genetics, Rats, Repetitive Sequences, Selection, Sequence Homology, Trinucleotide Repeat Expansion, Trinucleotide Repeat Expansion: genetics} } Model organisms have contributed substantially to our understanding of the etiology of human disease as well as having assisted with the development of new treatment modalities. The availability of the human, mouse and, most recently, the rat genome sequences now permit the comprehensive investigation of the rodent orthologs of genes associated with human disease. Here, we investigate whether human disease genes differ significantly from their rodent orthologs with respect to their overall levels of conservation and their rates of evolutionary change. |
Publication List
Amino Acid Animals Computational Biology Databases de novo gene DNA Evolution Genetic Genome human Humans Mice Molecular Molecular Sequence Data Proteins Proteins: chemistry Proteins: genetics Repetitive Sequences ribosome profiling RNA-Seq Selection Sequence Analysis Sequence Homology transcriptomics yeast
2007 |
PEAKS: identification of regulatory motifs by their position in DNA sequences. (Article) Bioinformatics (Oxford, England), 23 (2), pp. 243–4, 2007, ISSN: 1367-4811. |
2004 |
Comparative analysis of amino acid repeats in rodents and humans. (Article) Genome research, 14 (4), pp. 549–54, 2004, ISSN: 1088-9051. |
Genome biology, 5 (7), pp. R47, 2004, ISSN: 1465-6914. |