2012 |
Toll-Riera, Macarena, Bostick, David, Albà, M Mar, Plotkin, Joshua B Structure and age jointly influence rates of protein evolution. (Article) PLoS computational biology, 8 (5), pp. e1002542, 2012, ISSN: 1553-7358. (Abstract | Links | BibTeX | Tags: Animals, Binding Sites, Computational Biology, Eukaryota, Evolution, Humans, Mice, Molecular, Protein Conformation, Protein Stability, Proteins, Proteins: chemistry, Proteins: genetics, Proteins: metabolism, Solvents) @article{Toll-Riera2012a, title = {Structure and age jointly influence rates of protein evolution.}, author = {Toll-Riera, Macarena and Bostick, David and Albà, M Mar and Plotkin, Joshua B}, url = {http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3364943&tool=pmcentrez&rendertype=abstract}, issn = {1553-7358}, year = {2012}, date = {2012-01-01}, journal = {PLoS computational biology}, volume = {8}, number = {5}, pages = {e1002542}, abstract = {What factors determine a protein's rate of evolution are actively debated. Especially unclear is the relative role of intrinsic factors of present-day proteins versus historical factors such as protein age. Here we study the interplay of structural properties and evolutionary age, as determinants of protein evolutionary rate. We use a large set of one-to-one orthologs between human and mouse proteins, with mapped PDB structures. We report that previously observed structural correlations also hold within each age group - including relationships between solvent accessibility, designabililty, and evolutionary rates. However, age also plays a crucial role: age modulates the relationship between solvent accessibility and rate. Additionally, younger proteins, despite being less designable, tend to evolve faster than older proteins. We show that previously reported relationships between age and rate cannot be explained by structural biases among age groups. Finally, we introduce a knowledge-based potential function to study the stability of proteins through large-scale computation. We find that older proteins are more stable for their native structure, and more robust to mutations, than younger ones. Our results underscore that several determinants, both intrinsic and historical, can interact to determine rates of protein evolution.}, keywords = {Animals, Binding Sites, Computational Biology, Eukaryota, Evolution, Humans, Mice, Molecular, Protein Conformation, Protein Stability, Proteins, Proteins: chemistry, Proteins: genetics, Proteins: metabolism, Solvents} } What factors determine a protein's rate of evolution are actively debated. Especially unclear is the relative role of intrinsic factors of present-day proteins versus historical factors such as protein age. Here we study the interplay of structural properties and evolutionary age, as determinants of protein evolutionary rate. We use a large set of one-to-one orthologs between human and mouse proteins, with mapped PDB structures. We report that previously observed structural correlations also hold within each age group - including relationships between solvent accessibility, designabililty, and evolutionary rates. However, age also plays a crucial role: age modulates the relationship between solvent accessibility and rate. Additionally, younger proteins, despite being less designable, tend to evolve faster than older proteins. We show that previously reported relationships between age and rate cannot be explained by structural biases among age groups. Finally, we introduce a knowledge-based potential function to study the stability of proteins through large-scale computation. We find that older proteins are more stable for their native structure, and more robust to mutations, than younger ones. Our results underscore that several determinants, both intrinsic and historical, can interact to determine rates of protein evolution. |
2007 |
Albà, M Mar, Castresana, Jose On homology searches by protein Blast and the characterization of the age of genes. (Article) BMC evolutionary biology, 7 pp. 53, 2007, ISSN: 1471-2148. (Abstract | Links | BibTeX | Tags: Amino Acid, Animals, Computational Biology, Databases, Evolution, Genes, Humans, Molecular, Phylogeny, Protein, Sequence Analysis, Sequence Homology) @article{Alba2007, title = {On homology searches by protein Blast and the characterization of the age of genes.}, author = {Albà, M Mar and Castresana, Jose}, url = {http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1855329&tool=pmcentrez&rendertype=abstract}, issn = {1471-2148}, year = {2007}, date = {2007-01-01}, journal = {BMC evolutionary biology}, volume = {7}, pages = {53}, abstract = {It has been shown in a variety of organisms, including mammals, that genes that appeared recently in evolution, for example orphan genes, evolve faster than older genes. Low functional constraints at the time of origin of novel genes may explain these results. However, this observation has been recently attributed to an artifact caused by the inability of Blast to detect the fastest genes in different eukaryotic genomes. Distinguishing between these two possible explanations would be of great importance for any studies dealing with the taxon distribution of proteins and the origin of novel genes.}, keywords = {Amino Acid, Animals, Computational Biology, Databases, Evolution, Genes, Humans, Molecular, Phylogeny, Protein, Sequence Analysis, Sequence Homology} } It has been shown in a variety of organisms, including mammals, that genes that appeared recently in evolution, for example orphan genes, evolve faster than older genes. Low functional constraints at the time of origin of novel genes may explain these results. However, this observation has been recently attributed to an artifact caused by the inability of Blast to detect the fastest genes in different eukaryotic genomes. Distinguishing between these two possible explanations would be of great importance for any studies dealing with the taxon distribution of proteins and the origin of novel genes. |
2006 |
Furney, Simon J, Albà, M Mar, López-Bigas, Núria BMC genomics, 7 pp. 165, 2006, ISSN: 1471-2164. (Abstract | Links | BibTeX | Tags: Amino Acid, Animals, Caenorhabditis elegans, Caenorhabditis elegans: genetics, Computational Biology, Conserved Sequence, Dominant, Essential, Evolution, Genes, Genetic, Genetic Diseases, Genetic Structures, Humans, Inborn, Inborn: classification, Inborn: genetics, Mice, Molecular, Mutation, Pan troglodytes, Pan troglodytes: genetics, Recessive, Selection, Sequence Homology) @article{Furney2006, title = {Differences in the evolutionary history of disease genes affected by dominant or recessive mutations.}, author = {Furney, Simon J and Albà, M Mar and López-Bigas, Núria}, url = {http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1534034&tool=pmcentrez&rendertype=abstract}, issn = {1471-2164}, year = {2006}, date = {2006-01-01}, journal = {BMC genomics}, volume = {7}, pages = {165}, abstract = {Global analyses of human disease genes by computational methods have yielded important advances in the understanding of human diseases. Generally these studies have treated the group of disease genes uniformly, thus ignoring the type of disease-causing mutations (dominant or recessive). In this report we present a comprehensive study of the evolutionary history of autosomal disease genes separated by mode of inheritance.}, keywords = {Amino Acid, Animals, Caenorhabditis elegans, Caenorhabditis elegans: genetics, Computational Biology, Conserved Sequence, Dominant, Essential, Evolution, Genes, Genetic, Genetic Diseases, Genetic Structures, Humans, Inborn, Inborn: classification, Inborn: genetics, Mice, Molecular, Mutation, Pan troglodytes, Pan troglodytes: genetics, Recessive, Selection, Sequence Homology} } Global analyses of human disease genes by computational methods have yielded important advances in the understanding of human diseases. Generally these studies have treated the group of disease genes uniformly, thus ignoring the type of disease-causing mutations (dominant or recessive). In this report we present a comprehensive study of the evolutionary history of autosomal disease genes separated by mode of inheritance. |
2004 |
Albà, M Mar, Guigó, Roderic Comparative analysis of amino acid repeats in rodents and humans. (Article) Genome research, 14 (4), pp. 549–54, 2004, ISSN: 1088-9051. (Abstract | Links | BibTeX | Tags: Amino Acid, Amino Acid: genetics, Amino Acid: physiology, Animals, Chromosome Mapping, Chromosome Mapping: methods, Chromosome Mapping: statistics & numerical data, Computational Biology, Computational Biology: methods, Computational Biology: statistics & numerical data, GC Rich Sequence, GC Rich Sequence: genetics, Humans, Mice, Proteins, Proteins: chemistry, Proteins: genetics, Proteins: physiology, Rats, Repetitive Sequences, Trinucleotide Repeats, Trinucleotide Repeats: genetics) @article{Alba2004, title = {Comparative analysis of amino acid repeats in rodents and humans.}, author = {Albà, M Mar and Guigó, Roderic}, url = {http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=383298&tool=pmcentrez&rendertype=abstract}, issn = {1088-9051}, year = {2004}, date = {2004-01-01}, journal = {Genome research}, volume = {14}, number = {4}, pages = {549--54}, abstract = {Amino acid tandem repeats, also called homopolymeric tracts, are extremely abundant in eukaryotic proteins. To gain insight into the genome-wide evolution of these regions in mammals, we analyzed the repeat content in a large data set of rat-mouse-human orthologs. Our results show that human proteins contain more amino acid repeats than rodent proteins and that trinucleotide repeats are also more abundant in human coding sequences. Using the human species as an outgroup, we were able to address differences in repeat loss and repeat gain in the rat and mouse lineages. In this data set, mouse proteins contain substantially more repeats than rat proteins, which can be at least partly attributed to a higher repeat loss in the rat lineage. The data are consistent with a role for trinucleotide slippage in the generation of novel amino acid repeats. We confirm the previously observed functional bias of proteins with repeats, with overrepresentation of transcription factors and DNA-binding proteins. We show that genes encoding amino acid repeats tend to have an unusually high GC content, and that differences in coding GC content among orthologs are directly related to the presence/absence of repeats. We propose that the different GC content isochore structure in rodents and humans may result in an increased amino acid repeat prevalence in the human lineage.}, keywords = {Amino Acid, Amino Acid: genetics, Amino Acid: physiology, Animals, Chromosome Mapping, Chromosome Mapping: methods, Chromosome Mapping: statistics & numerical data, Computational Biology, Computational Biology: methods, Computational Biology: statistics & numerical data, GC Rich Sequence, GC Rich Sequence: genetics, Humans, Mice, Proteins, Proteins: chemistry, Proteins: genetics, Proteins: physiology, Rats, Repetitive Sequences, Trinucleotide Repeats, Trinucleotide Repeats: genetics} } Amino acid tandem repeats, also called homopolymeric tracts, are extremely abundant in eukaryotic proteins. To gain insight into the genome-wide evolution of these regions in mammals, we analyzed the repeat content in a large data set of rat-mouse-human orthologs. Our results show that human proteins contain more amino acid repeats than rodent proteins and that trinucleotide repeats are also more abundant in human coding sequences. Using the human species as an outgroup, we were able to address differences in repeat loss and repeat gain in the rat and mouse lineages. In this data set, mouse proteins contain substantially more repeats than rat proteins, which can be at least partly attributed to a higher repeat loss in the rat lineage. The data are consistent with a role for trinucleotide slippage in the generation of novel amino acid repeats. We confirm the previously observed functional bias of proteins with repeats, with overrepresentation of transcription factors and DNA-binding proteins. We show that genes encoding amino acid repeats tend to have an unusually high GC content, and that differences in coding GC content among orthologs are directly related to the presence/absence of repeats. We propose that the different GC content isochore structure in rodents and humans may result in an increased amino acid repeat prevalence in the human lineage. |
Castresana, Jose, Guigó, Roderic, Albà, M Mar Journal of molecular evolution, 59 (1), pp. 72–9, 2004, ISSN: 0022-2844. (Abstract | Links | BibTeX | Tags: Base Composition, Base Composition: genetics, Chromatin, Chromatin: metabolism, Chromosomes, Computational Biology, Databases, DNA-Binding Proteins, DNA-Binding Proteins: genetics, DNA-Binding Proteins: metabolism, Evolution, Genetic, Genome, human, Humans, Introns, Introns: genetics, Models, Molecular, Multigene Family, Multigene Family: genetics, Pair 19, Pair 19: genetics, Phylogeny, Zinc Fingers, Zinc Fingers: genetics) @article{Castresana2004, title = {Clustering of genes coding for DNA binding proteins in a region of atypical evolution of the human genome.}, author = {Castresana, Jose and Guigó, Roderic and Albà, M Mar}, url = {http://www.ncbi.nlm.nih.gov/pubmed/15383909}, issn = {0022-2844}, year = {2004}, date = {2004-01-01}, journal = {Journal of molecular evolution}, volume = {59}, number = {1}, pages = {72--9}, abstract = {Comparison of the human and mouse genomes has revealed that significant variations in evolutionary rates exist among genomic regions and that a large part of this variation is interchromosomal. We confirm in this work, using a large collection of introns, that human chromosome 19 is the one that shows the highest divergence with respect to mouse. To search for other differences among chromosomes, we examine the distribution of gene functions in human and mouse chromosomes using the Gene Ontology definitions. We found by correspondence analysis that among the strongest clusterings of gene functions in human chromosomes is a group of genes coding for DNA binding proteins in chromosome 19. Interestingly, chromosome 19 also has a very high GC content, a feature that has been proposed to promote an opening of the chromatin, thereby facilitating binding of proteins to the DNA helix. In the mouse genome, however, a similar aggregation of genes coding for DNA binding proteins and high GC content cannot be found. This suggests that the distribution of genes coding for DNA binding proteins and the variations of the chromatin accessibility to these proteins are different in the human and mouse genomes. It is likely that the overall high synonymous and intron rates in chromosome 19 are a by-product of the high GC content of this chromosome.}, keywords = {Base Composition, Base Composition: genetics, Chromatin, Chromatin: metabolism, Chromosomes, Computational Biology, Databases, DNA-Binding Proteins, DNA-Binding Proteins: genetics, DNA-Binding Proteins: metabolism, Evolution, Genetic, Genome, human, Humans, Introns, Introns: genetics, Models, Molecular, Multigene Family, Multigene Family: genetics, Pair 19, Pair 19: genetics, Phylogeny, Zinc Fingers, Zinc Fingers: genetics} } Comparison of the human and mouse genomes has revealed that significant variations in evolutionary rates exist among genomic regions and that a large part of this variation is interchromosomal. We confirm in this work, using a large collection of introns, that human chromosome 19 is the one that shows the highest divergence with respect to mouse. To search for other differences among chromosomes, we examine the distribution of gene functions in human and mouse chromosomes using the Gene Ontology definitions. We found by correspondence analysis that among the strongest clusterings of gene functions in human chromosomes is a group of genes coding for DNA binding proteins in chromosome 19. Interestingly, chromosome 19 also has a very high GC content, a feature that has been proposed to promote an opening of the chromatin, thereby facilitating binding of proteins to the DNA helix. In the mouse genome, however, a similar aggregation of genes coding for DNA binding proteins and high GC content cannot be found. This suggests that the distribution of genes coding for DNA binding proteins and the variations of the chromatin accessibility to these proteins are different in the human and mouse genomes. It is likely that the overall high synonymous and intron rates in chromosome 19 are a by-product of the high GC content of this chromosome. |
2002 |
Messeguer, Xavier, Escudero, Ruth, Farré, Domènec, Núñez, Oscar, Martínez, Javier, Albà, M Mar PROMO: detection of known transcription regulatory elements using species-tailored searches. (Article) Bioinformatics (Oxford, England), 18 (2), pp. 333–4, 2002, ISSN: 1367-4803. (Abstract | Links | BibTeX | Tags: Animals, Binding Sites, Binding Sites: genetics, Computational Biology, DNA, DNA: genetics, DNA: metabolism, Humans, Software, Species Specificity, Transcription Factors, Transcription Factors: metabolism) @article{Messeguer2002, title = {PROMO: detection of known transcription regulatory elements using species-tailored searches.}, author = {Messeguer, Xavier and Escudero, Ruth and Farré, Domènec and Núñez, Oscar and Martínez, Javier and Albà, M Mar}, url = {http://www.ncbi.nlm.nih.gov/pubmed/11847087}, issn = {1367-4803}, year = {2002}, date = {2002-01-01}, journal = {Bioinformatics (Oxford, England)}, volume = {18}, number = {2}, pages = {333--4}, abstract = {We have developed a set of tools to construct positional weight matrices from known transcription factor binding sites in a species or taxon-specific manner, and to search for matches in DNA sequences.}, keywords = {Animals, Binding Sites, Binding Sites: genetics, Computational Biology, DNA, DNA: genetics, DNA: metabolism, Humans, Software, Species Specificity, Transcription Factors, Transcription Factors: metabolism} } We have developed a set of tools to construct positional weight matrices from known transcription factor binding sites in a species or taxon-specific manner, and to search for matches in DNA sequences. |
Publication List
Amino Acid Animals Computational Biology de novo gene DNA Evolution Genetic Genome human Humans lncRNA Mice Molecular Molecular Sequence Data Nucleic Acid Proteins Proteins: chemistry Proteins: genetics Repetitive Sequences ribosome profiling RNA-Seq Selection Sequence Analysis transcriptomics yeast
2012 |
Structure and age jointly influence rates of protein evolution. (Article) PLoS computational biology, 8 (5), pp. e1002542, 2012, ISSN: 1553-7358. |
2007 |
On homology searches by protein Blast and the characterization of the age of genes. (Article) BMC evolutionary biology, 7 pp. 53, 2007, ISSN: 1471-2148. |
2006 |
BMC genomics, 7 pp. 165, 2006, ISSN: 1471-2164. |
2004 |
Comparative analysis of amino acid repeats in rodents and humans. (Article) Genome research, 14 (4), pp. 549–54, 2004, ISSN: 1088-9051. |
Journal of molecular evolution, 59 (1), pp. 72–9, 2004, ISSN: 0022-2844. |
2002 |
PROMO: detection of known transcription regulatory elements using species-tailored searches. (Article) Bioinformatics (Oxford, England), 18 (2), pp. 333–4, 2002, ISSN: 1367-4803. |