2007 |
Albà, M Mar, Castresana, Jose On homology searches by protein Blast and the characterization of the age of genes. (Article) BMC evolutionary biology, 7 pp. 53, 2007, ISSN: 1471-2148. (Abstract | Links | BibTeX | Tags: Amino Acid, Animals, Computational Biology, Databases, Evolution, Genes, Humans, Molecular, Phylogeny, Protein, Sequence Analysis, Sequence Homology) @article{Alba2007, title = {On homology searches by protein Blast and the characterization of the age of genes.}, author = {Albà, M Mar and Castresana, Jose}, url = {http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1855329&tool=pmcentrez&rendertype=abstract}, issn = {1471-2148}, year = {2007}, date = {2007-01-01}, journal = {BMC evolutionary biology}, volume = {7}, pages = {53}, abstract = {It has been shown in a variety of organisms, including mammals, that genes that appeared recently in evolution, for example orphan genes, evolve faster than older genes. Low functional constraints at the time of origin of novel genes may explain these results. However, this observation has been recently attributed to an artifact caused by the inability of Blast to detect the fastest genes in different eukaryotic genomes. Distinguishing between these two possible explanations would be of great importance for any studies dealing with the taxon distribution of proteins and the origin of novel genes.}, keywords = {Amino Acid, Animals, Computational Biology, Databases, Evolution, Genes, Humans, Molecular, Phylogeny, Protein, Sequence Analysis, Sequence Homology} } It has been shown in a variety of organisms, including mammals, that genes that appeared recently in evolution, for example orphan genes, evolve faster than older genes. Low functional constraints at the time of origin of novel genes may explain these results. However, this observation has been recently attributed to an artifact caused by the inability of Blast to detect the fastest genes in different eukaryotic genomes. Distinguishing between these two possible explanations would be of great importance for any studies dealing with the taxon distribution of proteins and the origin of novel genes. |
2006 |
Mularoni, Loris, Guigó, Roderic, Albà, M Mar Mutation patterns of amino acid tandem repeats in the human proteome. (Article) Genome biology, 7 (4), pp. R33, 2006, ISSN: 1465-6914. (Abstract | Links | BibTeX | Tags: Amino Acid, Amino Acid Substitution, Amino Acid: genetics, Codon, Expressed Sequence Tags, Genetic, Humans, Mutation, Polymorphism, Protein, Proteome, Proteome: genetics, Repetitive Sequences, Sequence Analysis) @article{Mularoni2006, title = {Mutation patterns of amino acid tandem repeats in the human proteome.}, author = {Mularoni, Loris and Guigó, Roderic and Albà, M Mar}, url = {http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1557989&tool=pmcentrez&rendertype=abstract}, issn = {1465-6914}, year = {2006}, date = {2006-01-01}, journal = {Genome biology}, volume = {7}, number = {4}, pages = {R33}, abstract = {Amino acid tandem repeats are found in nearly one-fifth of human proteins. Abnormal expansion of these regions is associated with several human disorders. To gain further insight into the mutational mechanisms that operate in this type of sequence, we have analyzed a large number of mutation variants derived from human expressed sequence tags (ESTs).}, keywords = {Amino Acid, Amino Acid Substitution, Amino Acid: genetics, Codon, Expressed Sequence Tags, Genetic, Humans, Mutation, Polymorphism, Protein, Proteome, Proteome: genetics, Repetitive Sequences, Sequence Analysis} } Amino acid tandem repeats are found in nearly one-fifth of human proteins. Abnormal expansion of these regions is associated with several human disorders. To gain further insight into the mutational mechanisms that operate in this type of sequence, we have analyzed a large number of mutation variants derived from human expressed sequence tags (ESTs). |
2002 |
Albà, M Mar, Laskowski, Roman A, Hancock, John M Detecting cryptically simple protein sequences using the SIMPLE algorithm. (Article) Bioinformatics (Oxford, England), 18 (5), pp. 672–8, 2002, ISSN: 1367-4803. (Abstract | Links | BibTeX | Tags: Algorithms, Amino Acid, Amino Acid Sequence, Amino Acid: genetics, Databases, Genetic, Genetic Variation, Internet, Minisatellite Repeats, Minisatellite Repeats: genetics, Models, Molecular Sequence Data, Protein, Protein: methods, Proteins, Proteins: chemistry, Repetitive Sequences, Saccharomyces cerevisiae, Saccharomyces cerevisiae: genetics, Sensitivity and Specificity, Sequence Analysis, Sequence Homology, Software, Statistical) @article{Alba2002, title = {Detecting cryptically simple protein sequences using the SIMPLE algorithm.}, author = {Albà, M Mar and Laskowski, Roman A and Hancock, John M}, url = {http://www.ncbi.nlm.nih.gov/pubmed/12050063}, issn = {1367-4803}, year = {2002}, date = {2002-01-01}, journal = {Bioinformatics (Oxford, England)}, volume = {18}, number = {5}, pages = {672--8}, abstract = {Low-complexity or cryptically simple sequences are widespread in protein sequences but their evolution and function are poorly understood. To date methods for the detection of low complexity in proteins have been directed towards the filtering of such regions prior to sequence homology searches but not to the analysis of the regions per se. However, many of these regions are encoded by non-repetitive DNA sequences and may therefore result from selection acting on protein structure and/or function.}, keywords = {Algorithms, Amino Acid, Amino Acid Sequence, Amino Acid: genetics, Databases, Genetic, Genetic Variation, Internet, Minisatellite Repeats, Minisatellite Repeats: genetics, Models, Molecular Sequence Data, Protein, Protein: methods, Proteins, Proteins: chemistry, Repetitive Sequences, Saccharomyces cerevisiae, Saccharomyces cerevisiae: genetics, Sensitivity and Specificity, Sequence Analysis, Sequence Homology, Software, Statistical} } Low-complexity or cryptically simple sequences are widespread in protein sequences but their evolution and function are poorly understood. To date methods for the detection of low complexity in proteins have been directed towards the filtering of such regions prior to sequence homology searches but not to the analysis of the regions per se. However, many of these regions are encoded by non-repetitive DNA sequences and may therefore result from selection acting on protein structure and/or function. |
Publication List
Amino Acid Animals Computational Biology de novo gene DNA Evolution Genetic Genome human Humans lncRNA Mice Molecular Molecular Sequence Data Nucleic Acid Proteins Proteins: chemistry Proteins: genetics Repetitive Sequences ribosome profiling RNA-Seq Selection Sequence Analysis transcriptomics yeast
2007 |
On homology searches by protein Blast and the characterization of the age of genes. (Article) BMC evolutionary biology, 7 pp. 53, 2007, ISSN: 1471-2148. |
2006 |
Mutation patterns of amino acid tandem repeats in the human proteome. (Article) Genome biology, 7 (4), pp. R33, 2006, ISSN: 1465-6914. |
2002 |
Detecting cryptically simple protein sequences using the SIMPLE algorithm. (Article) Bioinformatics (Oxford, England), 18 (5), pp. 672–8, 2002, ISSN: 1367-4803. |