2007 |
Albà, M Mar, Castresana, Jose On homology searches by protein Blast and the characterization of the age of genes. (Article) BMC evolutionary biology, 7 pp. 53, 2007, ISSN: 1471-2148. (Abstract | Links | BibTeX | Tags: Amino Acid, Animals, Computational Biology, Databases, Evolution, Genes, Humans, Molecular, Phylogeny, Protein, Sequence Analysis, Sequence Homology) @article{Alba2007, title = {On homology searches by protein Blast and the characterization of the age of genes.}, author = {Albà, M Mar and Castresana, Jose}, url = {http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1855329&tool=pmcentrez&rendertype=abstract}, issn = {1471-2148}, year = {2007}, date = {2007-01-01}, journal = {BMC evolutionary biology}, volume = {7}, pages = {53}, abstract = {It has been shown in a variety of organisms, including mammals, that genes that appeared recently in evolution, for example orphan genes, evolve faster than older genes. Low functional constraints at the time of origin of novel genes may explain these results. However, this observation has been recently attributed to an artifact caused by the inability of Blast to detect the fastest genes in different eukaryotic genomes. Distinguishing between these two possible explanations would be of great importance for any studies dealing with the taxon distribution of proteins and the origin of novel genes.}, keywords = {Amino Acid, Animals, Computational Biology, Databases, Evolution, Genes, Humans, Molecular, Phylogeny, Protein, Sequence Analysis, Sequence Homology} } It has been shown in a variety of organisms, including mammals, that genes that appeared recently in evolution, for example orphan genes, evolve faster than older genes. Low functional constraints at the time of origin of novel genes may explain these results. However, this observation has been recently attributed to an artifact caused by the inability of Blast to detect the fastest genes in different eukaryotic genomes. Distinguishing between these two possible explanations would be of great importance for any studies dealing with the taxon distribution of proteins and the origin of novel genes. |
2006 |
Furney, Simon J, Albà, M Mar, López-Bigas, Núria BMC genomics, 7 pp. 165, 2006, ISSN: 1471-2164. (Abstract | Links | BibTeX | Tags: Amino Acid, Animals, Caenorhabditis elegans, Caenorhabditis elegans: genetics, Computational Biology, Conserved Sequence, Dominant, Essential, Evolution, Genes, Genetic, Genetic Diseases, Genetic Structures, Humans, Inborn, Inborn: classification, Inborn: genetics, Mice, Molecular, Mutation, Pan troglodytes, Pan troglodytes: genetics, Recessive, Selection, Sequence Homology) @article{Furney2006, title = {Differences in the evolutionary history of disease genes affected by dominant or recessive mutations.}, author = {Furney, Simon J and Albà, M Mar and López-Bigas, Núria}, url = {http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1534034&tool=pmcentrez&rendertype=abstract}, issn = {1471-2164}, year = {2006}, date = {2006-01-01}, journal = {BMC genomics}, volume = {7}, pages = {165}, abstract = {Global analyses of human disease genes by computational methods have yielded important advances in the understanding of human diseases. Generally these studies have treated the group of disease genes uniformly, thus ignoring the type of disease-causing mutations (dominant or recessive). In this report we present a comprehensive study of the evolutionary history of autosomal disease genes separated by mode of inheritance.}, keywords = {Amino Acid, Animals, Caenorhabditis elegans, Caenorhabditis elegans: genetics, Computational Biology, Conserved Sequence, Dominant, Essential, Evolution, Genes, Genetic, Genetic Diseases, Genetic Structures, Humans, Inborn, Inborn: classification, Inborn: genetics, Mice, Molecular, Mutation, Pan troglodytes, Pan troglodytes: genetics, Recessive, Selection, Sequence Homology} } Global analyses of human disease genes by computational methods have yielded important advances in the understanding of human diseases. Generally these studies have treated the group of disease genes uniformly, thus ignoring the type of disease-causing mutations (dominant or recessive). In this report we present a comprehensive study of the evolutionary history of autosomal disease genes separated by mode of inheritance. |
2004 |
Huang, Hui, Winter, Eitan E, Wang, Huajun, Weinstock, Keith G, Xing, Heming, Goodstadt, Leo, Stenson, Peter D, Cooper, David N, Smith, Douglas, Albà, M Mar, Ponting, Chris P, Fechtel, Kim Genome biology, 5 (7), pp. R47, 2004, ISSN: 1465-6914. (Abstract | Links | BibTeX | Tags: Amino Acid, Amino Acid: genetics, Animal, Animals, Chromosome Mapping, Chromosome Mapping: methods, Conserved Sequence, Conserved Sequence: genetics, Disease Models, Evolution, Fishes, Fishes: genetics, Fungal, Fungal: genetics, Genes, Genes: genetics, Genes: physiology, Genetic, Genetic Diseases, Genome, Helminth, Helminth: genetics, human, Humans, Inborn, Inborn: genetics, Inborn: physiopathology, Insect, Insect: genetics, Mice, Molecular, Mutagenesis, Mutagenesis: genetics, Nucleic Acid, Nucleotides, Nucleotides: genetics, Point Mutation, Point Mutation: genetics, Rats, Repetitive Sequences, Selection, Sequence Homology, Trinucleotide Repeat Expansion, Trinucleotide Repeat Expansion: genetics) @article{Huang2004, title = {Evolutionary conservation and selection of human disease gene orthologs in the rat and mouse genomes.}, author = {Huang, Hui and Winter, Eitan E and Wang, Huajun and Weinstock, Keith G and Xing, Heming and Goodstadt, Leo and Stenson, Peter D and Cooper, David N and Smith, Douglas and Albà, M Mar and Ponting, Chris P and Fechtel, Kim}, url = {http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=463309&tool=pmcentrez&rendertype=abstract}, issn = {1465-6914}, year = {2004}, date = {2004-01-01}, journal = {Genome biology}, volume = {5}, number = {7}, pages = {R47}, abstract = {Model organisms have contributed substantially to our understanding of the etiology of human disease as well as having assisted with the development of new treatment modalities. The availability of the human, mouse and, most recently, the rat genome sequences now permit the comprehensive investigation of the rodent orthologs of genes associated with human disease. Here, we investigate whether human disease genes differ significantly from their rodent orthologs with respect to their overall levels of conservation and their rates of evolutionary change.}, keywords = {Amino Acid, Amino Acid: genetics, Animal, Animals, Chromosome Mapping, Chromosome Mapping: methods, Conserved Sequence, Conserved Sequence: genetics, Disease Models, Evolution, Fishes, Fishes: genetics, Fungal, Fungal: genetics, Genes, Genes: genetics, Genes: physiology, Genetic, Genetic Diseases, Genome, Helminth, Helminth: genetics, human, Humans, Inborn, Inborn: genetics, Inborn: physiopathology, Insect, Insect: genetics, Mice, Molecular, Mutagenesis, Mutagenesis: genetics, Nucleic Acid, Nucleotides, Nucleotides: genetics, Point Mutation, Point Mutation: genetics, Rats, Repetitive Sequences, Selection, Sequence Homology, Trinucleotide Repeat Expansion, Trinucleotide Repeat Expansion: genetics} } Model organisms have contributed substantially to our understanding of the etiology of human disease as well as having assisted with the development of new treatment modalities. The availability of the human, mouse and, most recently, the rat genome sequences now permit the comprehensive investigation of the rodent orthologs of genes associated with human disease. Here, we investigate whether human disease genes differ significantly from their rodent orthologs with respect to their overall levels of conservation and their rates of evolutionary change. |
Publication List
Amino Acid Animals Computational Biology Databases de novo gene Evolution Genetic Genome Humans lncRNA Mice Molecular Molecular Sequence Data Nucleic Acid Proteins Proteins: chemistry Proteins: genetics Repetitive Sequences ribosome profiling RNA-Seq Selection Sequence Analysis Sequence Homology transcriptomics yeast
2007 |
On homology searches by protein Blast and the characterization of the age of genes. (Article) BMC evolutionary biology, 7 pp. 53, 2007, ISSN: 1471-2148. |
2006 |
BMC genomics, 7 pp. 165, 2006, ISSN: 1471-2164. |
2004 |
Genome biology, 5 (7), pp. R47, 2004, ISSN: 1465-6914. |